Positive regulation of sugar catabolic pathways in the cyanobacterium Synechocystis sp. PCC 6803 by the group 2 sigma factor sigE.

نویسندگان

  • Takashi Osanai
  • Yu Kanesaki
  • Takayuki Nakano
  • Hiroyuki Takahashi
  • Munehiko Asayama
  • Makoto Shirai
  • Minoru Kanehisa
  • Iwane Suzuki
  • Norio Murata
  • Kan Tanaka
چکیده

The sigE gene of Synechocystis sp. PCC 6803 encodes a group 2 sigma factor for RNA polymerase and has been proposed to function in transcriptional regulation of nitrogen metabolism. By using microarray and Northern analyses, we demonstrated that the abundance of transcripts derived from genes important for glycolysis, the oxidative pentose phosphate pathway, and glycogen catabolism is reduced in a sigE mutant of Synechocystis maintained under the normal growth condition. Furthermore, the activities of the two key enzymes of the oxidative pentose phosphate pathway, glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase, encoded by the zwf and gnd genes were also reduced in the sigE mutant. The dark enhancements in both enzyme activity and transcript abundance apparent in the wild type were eliminated by the mutation. In addition, the sigE mutant showed a reduced rate of glucose uptake and an increased intracellular level of glycogen. Moreover, it was unable to proliferate under the light-activated heterotrophic growth conditions. These results indicate that SigE functions in the transcriptional activation of sugar catabolic pathways in Synechocystis sp. PCC 6803.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A response regulator Rre37 and an RNA polymerase sigma factor SigE represent two parallel pathways to activate sugar catabolism in a cyanobacterium Synechocystis sp. PCC 6803.

Sugar catabolic genes are induced during nitrogen starvation in a cyanobacterium Synechocystis sp. PCC 6803, but the underlying regulatory mechanism still remains to be completely characterized. In this study, we showed by molecular genetics and transcriptome analyses that a response regulator Rre37 (encoded by sll1330), whose expression is enhanced by nitrogen depletion under the control of Nt...

متن کامل

Changes in primary metabolism under light and dark conditions in response to overproduction of a response regulator RpaA in the unicellular cyanobacterium Synechocystis sp. PCC 6803

The study of the primary metabolism of cyanobacteria in response to light conditions is important for environmental biology because cyanobacteria are widely distributed among various ecological niches. Cyanobacteria uniquely possess circadian rhythms, with central oscillators consisting from three proteins, KaiA, KaiB, and KaiC. The two-component histidine kinase SasA/Hik8 and response regulato...

متن کامل

Impact of Different Group 2 Sigma Factors on Light Use Efficiency and High Salt Stress in the Cyanobacterium Synechocystis sp. PCC 6803

Sigma factors of RNA polymerase recognize promoters and have a central role in controlling transcription initiation and acclimation to changing environmental conditions. The cyanobacterium Synechocystis sp. PCC 6803 encodes four non-essential group 2 sigma factors, SigB, SigC, SigD and SigE that closely resemble the essential SigA factor. Three out of four group 2 sigma factors were simultaneou...

متن کامل

Characterization of single and double inactivation strains reveals new physiological roles for group 2 sigma factors in the cyanobacterium Synechocystis sp. PCC 6803.

Cyanobacteria are eubacteria that perform oxygenic photosynthesis like plants. The initiation of transcription, mediated by the RNA polymerase holoenzyme, is the main determinant of gene regulation in eubacteria. The sigma factor of the RNA polymerase holoenzyme is responsible for the recognition of a promoter sequence. In the cyanobacterium Synechocystis sp. PCC 6803, the primary sigma factor,...

متن کامل

Increased Bioplastic Production with an RNA Polymerase Sigma Factor SigE during Nitrogen Starvation in Synechocystis sp. PCC 6803

Because cyanobacteria directly harvest CO2 and light energy, their carbon metabolism is important for both basic and applied sciences. Here, we show that overexpression of the sigma factor sigE in Synechocystis sp. PCC 6803 widely changes sugar catabolism and increases production of the biodegradable polyester polyhydroxybutyrate (PHB) during nitrogen starvation. sigE overexpression elevates th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 280 35  شماره 

صفحات  -

تاریخ انتشار 2005